scala.collection.parallel.mutable.ParArray#ScanToArray

class ScanToArray[U >: T] extends Task[Unit, ScanToArray[U]]

Type Members

type Result = Unit

  • Definition Classes
    • Task

Value Members From scala.collection.parallel.Task

def repr: ScanToArray[U]

  • Definition Classes
    • Task

(defined at scala.collection.parallel.Task)


Instance Constructors From scala.collection.parallel.mutable.ParArray.ScanToArray ——————————————————————————–

new ScanToArray(tree: ParArray.ScanTree[U], z: U, op: (U, U) ⇒ U, targetarr: Array[Any])

(defined at scala.collection.parallel.mutable.ParArray.ScanToArray)

Value Members From scala.collection.parallel.mutable.ParArray.ScanToArray

def leaf(prev: Option[Unit]): Unit

Body of the task - non-divisible unit of work done by this task. Optionally is provided with the result from the previous completed task or None if there was no previous task (or the previous task is uncompleted or unknown).

  • Definition Classes
    • ScanToArray → Task

(defined at scala.collection.parallel.mutable.ParArray.ScanToArray)

def split: scala.Seq[Task[Unit, ScanToArray[U]]]

Splits this task into a list of smaller tasks.

  • Definition Classes
    • ScanToArray → Task

(defined at scala.collection.parallel.mutable.ParArray.ScanToArray)


Value Members From Implicit scala.collection.parallel.CollectionsHaveToParArray ——————————————————————————–

def toParArray: ParArray[T]

  • Implicit information
    • This member is added by an implicit conversion from ScanToArray [U] to CollectionsHaveToParArray [ScanToArray [U], T] performed by method CollectionsHaveToParArray in scala.collection.parallel. This conversion will take place only if an implicit value of type (ScanToArray [U]) ⇒ GenTraversableOnce [T] is in scope.
  • Definition Classes
    • CollectionsHaveToParArray (added by implicit convertion: scala.collection.parallel.CollectionsHaveToParArray)

Full Source:

/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2013, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */


package scala
package collection.parallel.mutable



import scala.collection.generic.GenericParTemplate
import scala.collection.generic.GenericCompanion
import scala.collection.generic.GenericParCompanion
import scala.collection.generic.CanCombineFrom
import scala.collection.generic.CanBuildFrom
import scala.collection.generic.ParFactory
import scala.collection.parallel.Combiner
import scala.collection.parallel.SeqSplitter
import scala.collection.parallel.ParSeqLike
import scala.collection.parallel.Task
import scala.collection.parallel.CHECK_RATE
import scala.collection.mutable.ArraySeq
import scala.collection.mutable.Builder
import scala.collection.GenTraversableOnce
import scala.reflect.ClassTag

/** Parallel sequence holding elements in a linear array.
 *
 *  `ParArray` is a parallel sequence with a predefined size. The size of the array
 *  cannot be changed after it's been created.
 *
 *  `ParArray` internally keeps an array containing the elements. This means that
 *  bulk operations based on traversal ensure fast access to elements. `ParArray` uses lazy builders that
 *  create the internal data array only after the size of the array is known. In the meantime, they keep
 *  the result set fragmented. The fragments
 *  are copied into the resulting data array in parallel using fast array copy operations once all the combiners
 *  are populated in parallel.
 *
 *  @tparam T        type of the elements in the array
 *
 *  @author Aleksandar Prokopec
 *  @since 2.9
 *  @see  [[http://docs.scala-lang.org/overviews/parallel-collections/concrete-parallel-collections.html#parallel_array Scala's Parallel Collections Library overview]]
 *  section on `ParArray` for more information.
 *
 *  @define Coll `ParArray`
 *  @define coll parallel array
 *
 */
@SerialVersionUID(1L)
class ParArray[T] private[mutable] (val arrayseq: ArraySeq[T])
extends ParSeq[T]
   with GenericParTemplate[T, ParArray]
   with ParSeqLike[T, ParArray[T], ArraySeq[T]]
   with Serializable
{
self =>

  @transient private var array: Array[Any] = arrayseq.array.asInstanceOf[Array[Any]]

  override def companion: GenericCompanion[ParArray] with GenericParCompanion[ParArray] = ParArray

  def this(sz: Int) = this {
    require(sz >= 0)
    new ArraySeq[T](sz)
  }

  def apply(i: Int) = array(i).asInstanceOf[T]

  def update(i: Int, elem: T) = array(i) = elem

  def length = arrayseq.length

  override def seq = arrayseq

  protected[parallel] def splitter: ParArrayIterator = {
    val pit = new ParArrayIterator
    pit
  }

  class ParArrayIterator(var i: Int = 0, val until: Int = length, val arr: Array[Any] = array)
  extends SeqSplitter[T] {
    def hasNext = i < until

    def next = {
      val elem = arr(i)
      i += 1
      elem.asInstanceOf[T]
    }

    def remaining = until - i

    def dup = new ParArrayIterator(i, until, arr)

    def psplit(sizesIncomplete: Int*): Seq[ParArrayIterator] = {
      var traversed = i
      val total = sizesIncomplete.reduceLeft(_ + _)
      val left = remaining
      val sizes = if (total >= left) sizesIncomplete else sizesIncomplete :+ (left - total)
      for (sz <- sizes) yield if (traversed < until) {
        val start = traversed
        val end = (traversed + sz) min until
        traversed = end
        new ParArrayIterator(start, end, arr)
      } else {
        new ParArrayIterator(traversed, traversed, arr)
      }
    }

    override def split: Seq[ParArrayIterator] = {
      val left = remaining
      if (left >= 2) {
        val splitpoint = left / 2
        val sq = Seq(
          new ParArrayIterator(i, i + splitpoint, arr),
          new ParArrayIterator(i + splitpoint, until, arr))
        i = until
        sq
      } else {
        Seq(this)
      }
    }

    override def toString = "ParArrayIterator(" + i + ", " + until + ")"

    /* overrides for efficiency */

    /* accessors */

    override def foreach[U](f: T => U) = {
      foreach_quick(f, arr, until, i)
      i = until
    }

    private def foreach_quick[U](f: T => U, a: Array[Any], ntil: Int, from: Int) = {
      var j = from
      while (j < ntil) {
        f(a(j).asInstanceOf[T])
        j += 1
      }
    }

    override def count(p: T => Boolean) = {
      val c = count_quick(p, arr, until, i)
      i = until
      c
    }

    private def count_quick(p: T => Boolean, a: Array[Any], ntil: Int, from: Int) = {
      var cnt = 0
      var j = from
      while (j < ntil) {
        if (p(a(j).asInstanceOf[T])) cnt += 1
        j += 1
      }
      cnt
    }

    override def foldLeft[S](z: S)(op: (S, T) => S): S = {
      val r = foldLeft_quick(arr, until, op, z)
      i = until
      r
    }

    private def foldLeft_quick[S](a: Array[Any], ntil: Int, op: (S, T) => S, z: S): S = {
      var j = i
      var sum = z
      while (j < ntil) {
        sum = op(sum, a(j).asInstanceOf[T])
        j += 1
      }
      sum
    }

    override def fold[U >: T](z: U)(op: (U, U) => U): U = foldLeft[U](z)(op)

    override def aggregate[S](z: =>S)(seqop: (S, T) => S, combop: (S, S) => S): S = foldLeft[S](z)(seqop)

    override def sum[U >: T](implicit num: Numeric[U]): U = {
      val s = sum_quick(num, arr, until, i, num.zero)
      i = until
      s
    }

    private def sum_quick[U >: T](num: Numeric[U], a: Array[Any], ntil: Int, from: Int, zero: U): U = {
      var j = from
      var sum = zero
      while (j < ntil) {
        sum = num.plus(sum, a(j).asInstanceOf[T])
        j += 1
      }
      sum
    }

    override def product[U >: T](implicit num: Numeric[U]): U = {
        val p = product_quick(num, arr, until, i, num.one)
        i = until
        p
    }

    private def product_quick[U >: T](num: Numeric[U], a: Array[Any], ntil: Int, from: Int, one: U): U = {
        var j = from
        var prod = one
        while (j < ntil) {
          prod = num.times(prod, a(j).asInstanceOf[T])
          j += 1
        }
        prod
    }

    override def forall(p: T => Boolean): Boolean = {
      if (isAborted) return false

      var all = true
      while (i < until) {
        val nextuntil = if (i + CHECK_RATE > until) until else i + CHECK_RATE

        all = forall_quick(p, array, nextuntil, i)
        if (all) i = nextuntil
        else {
          i = until
          abort()
        }

        if (isAborted) return false
      }
      all
    }

    // it's faster to use a separate small method
    private def forall_quick(p: T => Boolean, a: Array[Any], nextuntil: Int, start: Int): Boolean = {
      var j = start
      while (j < nextuntil) {
        if (p(a(j).asInstanceOf[T])) j += 1
        else return false
      }
      true
    }

    override def exists(p: T => Boolean): Boolean = {
      if (isAborted) return true

      var some = false
      while (i < until) {
        val nextuntil = if (i + CHECK_RATE > until) until else i + CHECK_RATE

        some = exists_quick(p, array, nextuntil, i)
        if (some) {
          i = until
          abort()
        } else i = nextuntil

        if (isAborted) return true
      }
      some
    }

    // faster to use separate small method
    private def exists_quick(p: T => Boolean, a: Array[Any], nextuntil: Int, start: Int): Boolean = {
      var j = start
      while (j < nextuntil) {
        if (p(a(j).asInstanceOf[T])) return true
        else j += 1
      }
      false
    }

    override def find(p: T => Boolean): Option[T] = {
      if (isAborted) return None

      var r: Option[T] = None
      while (i < until) {
        val nextuntil = if ((i + CHECK_RATE) < until) (i + CHECK_RATE) else until

        r = find_quick(p, array, nextuntil, i)

        if (r != None) {
          i = until
          abort()
        } else i = nextuntil

        if (isAborted) return r
      }
      r
    }

    private def find_quick(p: T => Boolean, a: Array[Any], nextuntil: Int, start: Int): Option[T] = {
      var j = start
      while (j < nextuntil) {
        val elem = a(j).asInstanceOf[T]
        if (p(elem)) return Some(elem)
        else j += 1
      }
      None
    }

    override def drop(n: Int): ParArrayIterator = {
      i += n
      this
    }

    override def copyToArray[U >: T](array: Array[U], from: Int, len: Int) {
      val totallen = (self.length - i) min len min (array.length - from)
      Array.copy(arr, i, array, from, totallen)
      i += totallen
    }

    override def prefixLength(pred: T => Boolean): Int = {
      val r = prefixLength_quick(pred, arr, until, i)
      i += r + 1
      r
    }

    private def prefixLength_quick(pred: T => Boolean, a: Array[Any], ntil: Int, startpos: Int): Int = {
      var j = startpos
      var endpos = ntil
      while (j < endpos) {
        if (pred(a(j).asInstanceOf[T])) j += 1
        else endpos = j
      }
      endpos - startpos
    }

    override def indexWhere(pred: T => Boolean): Int = {
      val r = indexWhere_quick(pred, arr, until, i)
      val ret = if (r != -1) r - i else r
      i = until
      ret
    }

    private def indexWhere_quick(pred: T => Boolean, a: Array[Any], ntil: Int, from: Int): Int = {
      var j = from
      var pos = -1
      while (j < ntil) {
        if (pred(a(j).asInstanceOf[T])) {
          pos = j
          j = ntil
        } else j += 1
      }
      pos
    }

    override def lastIndexWhere(pred: T => Boolean): Int = {
      val r = lastIndexWhere_quick(pred, arr, i, until)
      val ret = if (r != -1) r - i else r
      i = until
      ret
    }

    private def lastIndexWhere_quick(pred: T => Boolean, a: Array[Any], from: Int, ntil: Int): Int = {
      var pos = -1
      var j = ntil - 1
      while (j >= from) {
        if (pred(a(j).asInstanceOf[T])) {
          pos = j
          j = -1
        } else j -= 1
      }
      pos
    }

    override def sameElements(that: Iterator[_]): Boolean = {
      var same = true
      while (i < until && that.hasNext) {
        if (arr(i) != that.next) {
          i = until
          same = false
        }
        i += 1
      }
      same
    }

    /* transformers */

    override def map2combiner[S, That](f: T => S, cb: Combiner[S, That]): Combiner[S, That] = {
      //val cb = cbf(self.repr)
      cb.sizeHint(remaining)
      map2combiner_quick(f, arr, cb, until, i)
      i = until
      cb
    }

    private def map2combiner_quick[S, That](f: T => S, a: Array[Any], cb: Builder[S, That], ntil: Int, from: Int) {
      var j = from
      while (j < ntil) {
        cb += f(a(j).asInstanceOf[T])
        j += 1
      }
    }

    override def collect2combiner[S, That](pf: PartialFunction[T, S], cb: Combiner[S, That]): Combiner[S, That] = {
      //val cb = pbf(self.repr)
      collect2combiner_quick(pf, arr, cb, until, i)
      i = until
      cb
    }

    private def collect2combiner_quick[S, That](pf: PartialFunction[T, S], a: Array[Any], cb: Builder[S, That], ntil: Int, from: Int) {
      var j = from
      val runWith = pf.runWith(b => cb += b)
      while (j < ntil) {
        val curr = a(j).asInstanceOf[T]
        runWith(curr)
        j += 1
      }
    }

    override def flatmap2combiner[S, That](f: T => GenTraversableOnce[S], cb: Combiner[S, That]): Combiner[S, That] = {
      //val cb = pbf(self.repr)
      while (i < until) {
        val traversable = f(arr(i).asInstanceOf[T])
        if (traversable.isInstanceOf[Iterable[_]]) cb ++= traversable.asInstanceOf[Iterable[S]].iterator
        else cb ++= traversable.seq
        i += 1
      }
      cb
    }

    override def filter2combiner[U >: T, This](pred: T => Boolean, cb: Combiner[U, This]) = {
      filter2combiner_quick(pred, cb, arr, until, i)
      i = until
      cb
    }

    private def filter2combiner_quick[U >: T, This](pred: T => Boolean, cb: Builder[U, This], a: Array[Any], ntil: Int, from: Int) {
      var j = i
      while(j < ntil) {
        val curr = a(j).asInstanceOf[T]
        if (pred(curr)) cb += curr
        j += 1
      }
    }

    override def filterNot2combiner[U >: T, This](pred: T => Boolean, cb: Combiner[U, This]) = {
      filterNot2combiner_quick(pred, cb, arr, until, i)
      i = until
      cb
    }

    private def filterNot2combiner_quick[U >: T, This](pred: T => Boolean, cb: Builder[U, This], a: Array[Any], ntil: Int, from: Int) {
      var j = i
      while(j < ntil) {
        val curr = a(j).asInstanceOf[T]
        if (!pred(curr)) cb += curr
        j += 1
      }
    }

    override def copy2builder[U >: T, Coll, Bld <: Builder[U, Coll]](cb: Bld): Bld = {
      cb.sizeHint(remaining)
      cb.ifIs[ResizableParArrayCombiner[T]] {
      pac =>
        // with res. combiner:
        val targetarr: Array[Any] = pac.lastbuff.internalArray.asInstanceOf[Array[Any]]
        Array.copy(arr, i, targetarr, pac.lastbuff.size, until - i)
        pac.lastbuff.setInternalSize(remaining)
      } otherwise {
        cb.ifIs[UnrolledParArrayCombiner[T]] {
          pac =>
            // with unr. combiner:
            val targetarr: Array[Any] = pac.buff.lastPtr.array.asInstanceOf[Array[Any]]
          Array.copy(arr, i, targetarr, 0, until - i)
          pac.buff.size = pac.buff.size + until - i
          pac.buff.lastPtr.size = until - i
        } otherwise {
          copy2builder_quick(cb, arr, until, i)
          i = until
        }
      }
      cb
    }

    private def copy2builder_quick[U >: T, Coll](b: Builder[U, Coll], a: Array[Any], ntil: Int, from: Int) {
      var j = from
      while (j < ntil) {
        b += a(j).asInstanceOf[T]
        j += 1
      }
    }

    override def partition2combiners[U >: T, This](pred: T => Boolean, btrue: Combiner[U, This], bfalse: Combiner[U, This]) = {
      partition2combiners_quick(pred, btrue, bfalse, arr, until, i)
      i = until
      (btrue, bfalse)
    }

    private def partition2combiners_quick[U >: T, This](p: T => Boolean, btrue: Builder[U, This], bfalse: Builder[U, This], a: Array[Any], ntil: Int, from: Int) {
      var j = from
      while (j < ntil) {
        val curr = a(j).asInstanceOf[T]
        if (p(curr)) btrue += curr else bfalse += curr
        j += 1
      }
    }

    override def take2combiner[U >: T, This](n: Int, cb: Combiner[U, This]) = {
      cb.sizeHint(n)
      val ntil = i + n
      val a = arr
      while (i < ntil) {
        cb += a(i).asInstanceOf[T]
        i += 1
      }
      cb
    }

    override def drop2combiner[U >: T, This](n: Int, cb: Combiner[U, This]) = {
      drop(n)
      cb.sizeHint(remaining)
      while (i < until) {
        cb += arr(i).asInstanceOf[T]
        i += 1
      }
      cb
    }

    override def reverse2combiner[U >: T, This](cb: Combiner[U, This]): Combiner[U, This] = {
      cb.ifIs[ResizableParArrayCombiner[T]] {
      pac =>
        // with res. combiner:
        val sz = remaining
        pac.sizeHint(sz)
        val targetarr: Array[Any] = pac.lastbuff.internalArray.asInstanceOf[Array[Any]]
        reverse2combiner_quick(targetarr, arr, 0, i, until)
        pac.lastbuff.setInternalSize(sz)
      } otherwise {
        cb.ifIs[UnrolledParArrayCombiner[T]] {
          pac =>
            // with unr. combiner:
            val sz = remaining
          pac.sizeHint(sz)
          val targetarr: Array[Any] = pac.buff.lastPtr.array.asInstanceOf[Array[Any]]
          reverse2combiner_quick(targetarr, arr, 0, i, until)
          pac.buff.size = pac.buff.size + sz
          pac.buff.lastPtr.size = sz
        } otherwise super.reverse2combiner(cb)
      }
      cb
    }

    private def reverse2combiner_quick(targ: Array[Any], a: Array[Any], targfrom: Int, srcfrom: Int, srcuntil: Int) {
      var j = srcfrom
      var k = targfrom + srcuntil - srcfrom - 1
      while (j < srcuntil) {
        targ(k) = a(j)
        j += 1
        k -= 1
      }
    }

    override def scanToArray[U >: T, A >: U](z: U, op: (U, U) => U, destarr: Array[A], from: Int) {
      scanToArray_quick[U](array, destarr.asInstanceOf[Array[Any]], op, z, i, until, from)
      i = until
    }

    protected def scanToArray_quick[U](srcarr: Array[Any], destarr: Array[Any], op: (U, U) => U, z: U, srcfrom: Int, srcntil: Int, destfrom: Int) {
      var last = z
      var j = srcfrom
      var k = destfrom
      while (j < srcntil) {
        last = op(last, srcarr(j).asInstanceOf[U])
        destarr(k) = last
        j += 1
        k += 1
      }
    }

  }

  /* operations */

  private def buildsArray[S, That](c: Builder[S, That]) = c.isInstanceOf[ParArrayCombiner[_]]

  override def map[S, That](f: T => S)(implicit bf: CanBuildFrom[ParArray[T], S, That]) = if (buildsArray(bf(repr))) {
    // reserve an array
    val targarrseq = new ArraySeq[S](length)
    val targetarr = targarrseq.array.asInstanceOf[Array[Any]]

    // fill it in parallel
    tasksupport.executeAndWaitResult(new Map[S](f, targetarr, 0, length))

    // wrap it into a parallel array
    (new ParArray[S](targarrseq)).asInstanceOf[That]
  } else super.map(f)(bf)

  override def scan[U >: T, That](z: U)(op: (U, U) => U)(implicit cbf: CanBuildFrom[ParArray[T], U, That]): That =
    if (tasksupport.parallelismLevel > 1 && buildsArray(cbf(repr))) {
      // reserve an array
      val targarrseq = new ArraySeq[U](length + 1)
      val targetarr = targarrseq.array.asInstanceOf[Array[Any]]
      targetarr(0) = z

      // do a parallel prefix scan
      if (length > 0) tasksupport.executeAndWaitResult(new CreateScanTree[U](0, size, z, op, splitter) mapResult {
        tree => tasksupport.executeAndWaitResult(new ScanToArray(tree, z, op, targetarr))
      })

      // wrap the array into a parallel array
      (new ParArray[U](targarrseq)).asInstanceOf[That]
    } else super.scan(z)(op)(cbf)

  /* tasks */

  class ScanToArray[U >: T](tree: ScanTree[U], z: U, op: (U, U) => U, targetarr: Array[Any])
  extends Task[Unit, ScanToArray[U]] {
    var result = ()

    def leaf(prev: Option[Unit]) = iterate(tree)
    private def iterate(tree: ScanTree[U]): Unit = tree match {
      case ScanNode(left, right) =>
        iterate(left)
        iterate(right)
      case ScanLeaf(_, _, from, len, Some(prev), _) =>
        scanLeaf(array, targetarr, from, len, prev.acc)
      case ScanLeaf(_, _, from, len, None, _) =>
        scanLeaf(array, targetarr, from, len, z)
    }
    private def scanLeaf(srcarr: Array[Any], targetarr: Array[Any], from: Int, len: Int, startval: U) {
      var i = from
      val until = from + len
      var curr = startval
      val operation = op
      while (i < until) {
        curr = operation(curr, srcarr(i).asInstanceOf[U])
        i += 1
        targetarr(i) = curr
      }
    }
    def split = tree match {
      case ScanNode(left, right) => Seq(
        new ScanToArray(left, z, op, targetarr),
        new ScanToArray(right, z, op, targetarr)
      )
      case _ => sys.error("Can only split scan tree internal nodes.")
    }
    def shouldSplitFurther = tree match {
      case ScanNode(_, _) => true
      case _ => false
    }
  }

  class Map[S](f: T => S, targetarr: Array[Any], offset: Int, howmany: Int) extends Task[Unit, Map[S]] {
    var result = ()

    def leaf(prev: Option[Unit]) = {
      val tarr = targetarr
      val sarr = array
      var i = offset
      val until = offset + howmany
      while (i < until) {
        tarr(i) = f(sarr(i).asInstanceOf[T])
        i += 1
      }
    }
    def split = {
      val fp = howmany / 2
      List(new Map(f, targetarr, offset, fp), new Map(f, targetarr, offset + fp, howmany - fp))
    }
    def shouldSplitFurther = howmany > scala.collection.parallel.thresholdFromSize(length, tasksupport.parallelismLevel)
  }

  /* serialization */

  private def writeObject(out: java.io.ObjectOutputStream) {
    out.defaultWriteObject
  }

  private def readObject(in: java.io.ObjectInputStream) {
    in.defaultReadObject

    // get raw array from arrayseq
    array = arrayseq.array.asInstanceOf[Array[Any]]
  }

}


/** $factoryInfo
 *  @define Coll `mutable.ParArray`
 *  @define coll parallel array
 */
object ParArray extends ParFactory[ParArray] {
  implicit def canBuildFrom[T]: CanCombineFrom[Coll, T, ParArray[T]] = new GenericCanCombineFrom[T]
  def newBuilder[T]: Combiner[T, ParArray[T]] = newCombiner
  def newCombiner[T]: Combiner[T, ParArray[T]] = ParArrayCombiner[T]

  /** Creates a new parallel array by wrapping the specified array.
   */
  def handoff[T](arr: Array[T]): ParArray[T] = wrapOrRebuild(arr, arr.length)

  /** Creates a new parallel array by wrapping a part of the specified array.
   */
  def handoff[T](arr: Array[T], sz: Int): ParArray[T] = wrapOrRebuild(arr, sz)

  private def wrapOrRebuild[T](arr: AnyRef, sz: Int) = arr match {
    case arr: Array[AnyRef] => new ParArray[T](new ExposedArraySeq[T](arr, sz))
    case _ => new ParArray[T](new ExposedArraySeq[T](scala.runtime.ScalaRunTime.toObjectArray(arr), sz))
  }

  def createFromCopy[T <: AnyRef : ClassTag](arr: Array[T]): ParArray[T] = {
    val newarr = new Array[T](arr.length)
    Array.copy(arr, 0, newarr, 0, arr.length)
    handoff(newarr)
  }

  def fromTraversables[T](xss: GenTraversableOnce[T]*) = {
    val cb = ParArrayCombiner[T]()
    for (xs <- xss) {
      cb ++= xs.seq
    }
    cb.result
  }

}