# scala.math.Integral

• Source
• Since
• 2.8

• Source

### `class Ops extends AnyRef`

• Definition Classes
• Numeric

### `def reversed(): Comparator[T]`

• Definition Classes
• Comparator

(defined at java.util.Comparator)

### `def thenComparing(arg0: Comparator[_ >: T]): Comparator[T]`

• Definition Classes
• Comparator

(defined at java.util.Comparator)

### `def thenComparingDouble(arg0: ToDoubleFunction[_ >: T]): Comparator[T]`

• Definition Classes
• Comparator

(defined at java.util.Comparator)

### `def thenComparingInt(arg0: ToIntFunction[_ >: T]): Comparator[T]`

• Definition Classes
• Comparator

(defined at java.util.Comparator)

### `def thenComparingLong(arg0: ToLongFunction[_ >: T]): Comparator[T]`

• Definition Classes
• Comparator

(defined at java.util.Comparator)

### `def thenComparing[U <: Comparable[_ >: U]](arg0: java.util.function.Function[_ >: T, _ <: U]): Comparator[T]`

• Definition Classes
• Comparator

(defined at java.util.Comparator)

### `def thenComparing[U](arg0: java.util.function.Function[_ >: T, _ <: U], arg1: Comparator[_ >: U]): Comparator[T]`

• Definition Classes
• Comparator

(defined at java.util.Comparator)

### `abstract def quot(x: T, y: T): T`

(defined at scala.math.Integral)

### `abstract def rem(x: T, y: T): T`

(defined at scala.math.Integral)

### `implicit def mkNumericOps(lhs: T): IntegralOps`

• Definition Classes
• Integral → Numeric

(defined at scala.math.Integral)

### `abstract def fromInt(x: Int): T`

• Definition Classes
• Numeric

(defined at scala.math.Numeric)

### `abstract def minus(x: T, y: T): T`

• Definition Classes
• Numeric

(defined at scala.math.Numeric)

### `abstract def negate(x: T): T`

• Definition Classes
• Numeric

(defined at scala.math.Numeric)

### `abstract def plus(x: T, y: T): T`

• Definition Classes
• Numeric

(defined at scala.math.Numeric)

### `abstract def times(x: T, y: T): T`

• Definition Classes
• Numeric

(defined at scala.math.Numeric)

### `abstract def toDouble(x: T): Double`

• Definition Classes
• Numeric

(defined at scala.math.Numeric)

### `abstract def toFloat(x: T): Float`

• Definition Classes
• Numeric

(defined at scala.math.Numeric)

### `abstract def toInt(x: T): Int`

• Definition Classes
• Numeric

(defined at scala.math.Numeric)

### `abstract def toLong(x: T): Long`

• Definition Classes
• Numeric

(defined at scala.math.Numeric)

### `def abs(x: T): T`

• Definition Classes
• Numeric

(defined at scala.math.Numeric)

### `def signum(x: T): Int`

• Definition Classes
• Numeric

(defined at scala.math.Numeric)

### `abstract def compare(x: T, y: T): Int`

Returns an integer whose sign communicates how x compares to y.

The result sign has the following meaning:

• negative if x < y
• positive if x > y
• zero otherwise (if x == y)

• Definition Classes
• Ordering → Comparator

(defined at scala.math.Ordering)

### `def equiv(x: T, y: T): Boolean`

Return true if `x` == `y` in the ordering.

• Definition Classes
• Ordering → PartialOrdering → Equiv

(defined at scala.math.Ordering)

### `def gt(x: T, y: T): Boolean`

Return true if `x` > `y` in the ordering.

• Definition Classes
• Ordering → PartialOrdering

(defined at scala.math.Ordering)

### `def gteq(x: T, y: T): Boolean`

Return true if `x` >= `y` in the ordering.

• Definition Classes
• Ordering → PartialOrdering

(defined at scala.math.Ordering)

### `def lt(x: T, y: T): Boolean`

Return true if `x` < `y` in the ordering.

• Definition Classes
• Ordering → PartialOrdering

(defined at scala.math.Ordering)

### `def lteq(x: T, y: T): Boolean`

Return true if `x` <= `y` in the ordering.

• Definition Classes
• Ordering → PartialOrdering

(defined at scala.math.Ordering)

### `def max(x: T, y: T): T`

Return `x` if `x` >= `y` , otherwise `y` .

• Definition Classes
• Ordering

(defined at scala.math.Ordering)

### `def min(x: T, y: T): T`

Return `x` if `x` <= `y` , otherwise `y` .

• Definition Classes
• Ordering

(defined at scala.math.Ordering)

### `implicit def mkOrderingOps(lhs: T): Integral.Ops`

This implicit method augments `T` with the comparison operators defined in `scala.math.Ordering.Ops` .

• Definition Classes
• Ordering

(defined at scala.math.Ordering)

### `def on[U](f: (U) ⇒ T): Ordering[U]`

Given f, a function from U into T, creates an Ordering[U] whose compare function is equivalent to:

• Definition Classes
• Ordering

(defined at scala.math.Ordering)

### `def reverse: Ordering[T]`

Return the opposite ordering of this one.

• Definition Classes
• Ordering → PartialOrdering

(defined at scala.math.Ordering)

### `def tryCompare(x: T, y: T): Some[Int]`

Returns whether a comparison between `x` and `y` is defined, and if so the result of `compare(x, y)` .

• Definition Classes
• Ordering → PartialOrdering (defined at scala.math.Ordering)