scala.util.Sorting

object Sorting

The Sorting object provides convenience wrappers for java.util.Arrays.sort . Methods that defer to java.util.Arrays.sort say that they do or under what conditions that they do.

Sorting also implements a general-purpose quicksort and stable (merge) sort for those cases where java.util.Arrays.sort could only be used at the cost of a large memory penalty. If performance rather than memory usage is the primary concern, one may wish to find alternate strategies to use java.util.Arrays.sort directly e.g. by boxing primitives to use a custom ordering on them.

Sorting provides methods where you can provide a comparison function, or can request a sort of items that are scala.math.Ordered or that otherwise have an implicit or explicit scala.math.Ordering.

Note also that high-performance non-default sorts for numeric types are not provided. If this is required, it is advisable to investigate other libraries that cover this use case.

Value Members From scala.util.Sorting

def quickSort(a: Array[Double]): Unit

Sort an array of Doubles using java.util.Arrays.sort .

(defined at scala.util.Sorting)

def quickSort(a: Array[Float]): Unit

Sort an array of Floats using java.util.Arrays.sort .

(defined at scala.util.Sorting)

def quickSort(a: Array[Int]): Unit

Sort an array of Ints using java.util.Arrays.sort .

(defined at scala.util.Sorting)

def quickSort[K](a: Array[K])(implicit arg0: math.Ordering[K]): Unit

Sort array a with quicksort, using the Ordering on its elements. This algorithm sorts in place, so no additional memory is used aside from what might be required to box individual elements during comparison.

(defined at scala.util.Sorting)

def stableSort[K, M](a: Seq[K], f: (K) ⇒ M)(implicit arg0: ClassTag[K], arg1: math.Ordering[M]): Array[K]

A sorted Array, given an extraction function f that returns an ordered key for each item in the sequence a . Uses java.util.Arrays.sort unless K is a primitive type.

(defined at scala.util.Sorting)

def stableSort[K](a: Array[K])(implicit arg0: ClassTag[K], arg1: math.Ordering[K]): Unit

Sort array a using the Ordering on its elements, preserving the original ordering where possible. Uses java.util.Arrays.sort unless K is a primitive type.

(defined at scala.util.Sorting)

def stableSort[K](a: Array[K], f: (K, K) ⇒ Boolean)(implicit arg0: ClassTag[K]): Unit

Sort array a using function f that computes the less-than relation for each element. Uses java.util.Arrays.sort unless K is a primitive type.

(defined at scala.util.Sorting)

def stableSort[K](a: Seq[K])(implicit arg0: ClassTag[K], arg1: math.Ordering[K]): Array[K]

A sorted Array, using the Ordering for the elements in the sequence a . Uses java.util.Arrays.sort unless K is a primitive type.

(defined at scala.util.Sorting)

def stableSort[K](a: Seq[K], f: (K, K) ⇒ Boolean)(implicit arg0: ClassTag[K]): Array[K]

A sorted Array, given a function f that computes the less-than relation for each item in the sequence a . Uses java.util.Arrays.sort unless K is a primitive type. (defined at scala.util.Sorting)

Full Source:

/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2006-2015, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

package scala
package util

import scala.reflect.ClassTag
import scala.math.Ordering

/** The `Sorting` object provides convenience wrappers for `java.util.Arrays.sort`.
  * Methods that defer to `java.util.Arrays.sort` say that they do or under what
  * conditions that they do.
  *
  * `Sorting` also implements a general-purpose quicksort and stable (merge) sort
  * for those cases where `java.util.Arrays.sort` could only be used at the cost
  * of a large memory penalty.  If performance rather than memory usage is the
  * primary concern, one may wish to find alternate strategies to use
  * `java.util.Arrays.sort` directly e.g. by boxing primitives to use
  * a custom ordering on them.
  *
  * `Sorting` provides methods where you can provide a comparison function, or
  * can request a sort of items that are [[scala.math.Ordered]] or that
  * otherwise have an implicit or explicit [[scala.math.Ordering]].
  *
  * Note also that high-performance non-default sorts for numeric types
  * are not provided.  If this is required, it is advisable to investigate
  * other libraries that cover this use case.
  *
  * @author  Ross Judson
  * @author  Adriaan Moors
  * @author  Rex Kerr
  * @version 1.1
  */
object Sorting {
  /** Sort an array of Doubles using `java.util.Arrays.sort`. */
  def quickSort(a: Array[Double]): Unit = java.util.Arrays.sort(a)

  /** Sort an array of Ints using `java.util.Arrays.sort`. */
  def quickSort(a: Array[Int]): Unit    = java.util.Arrays.sort(a)

  /** Sort an array of Floats using `java.util.Arrays.sort`. */
  def quickSort(a: Array[Float]): Unit  = java.util.Arrays.sort(a)

  private final val qsortThreshold = 16

  /** Sort array `a` with quicksort, using the Ordering on its elements.
    * This algorithm sorts in place, so no additional memory is used aside from
    * what might be required to box individual elements during comparison.
    */
  def quickSort[K: Ordering](a: Array[K]): Unit = {
    // Must have iN >= i0 or math will fail.  Also, i0 >= 0.
    def inner(a: Array[K], i0: Int, iN: Int, ord: Ordering[K]): Unit = {
      if (iN - i0 < qsortThreshold) insertionSort(a, i0, iN, ord)
      else {
        val iK = (i0 + iN) >>> 1    // Unsigned div by 2
        // Find index of median of first, central, and last elements
        var pL =
          if (ord.compare(a(i0), a(iN - 1)) <= 0)
            if (ord.compare(a(i0), a(iK)) < 0)
              if (ord.compare(a(iN - 1), a(iK)) < 0) iN - 1 else iK
            else i0
          else
            if (ord.compare(a(i0), a(iK)) < 0) i0
            else
              if (ord.compare(a(iN - 1), a(iK)) <= 0) iN - 1
              else iK
        val pivot = a(pL)
        // pL is the start of the pivot block; move it into the middle if needed
        if (pL != iK) { a(pL) = a(iK); a(iK) = pivot; pL = iK }
        // Elements equal to the pivot will be in range pL until pR
        var pR = pL + 1
        // Items known to be less than pivot are below iA (range i0 until iA)
        var iA = i0
        // Items known to be greater than pivot are at or above iB (range iB until iN)
        var iB = iN
        // Scan through everything in the buffer before the pivot(s)
        while (pL - iA > 0) {
          val current = a(iA)
          ord.compare(current, pivot) match {
            case 0 =>
              // Swap current out with pivot block
              a(iA) = a(pL - 1)
              a(pL - 1) = current
              pL -= 1
            case x if x < 0 =>
              // Already in place.  Just update indices.
              iA += 1
            case _ if iB > pR =>
              // Wrong side.  There's room on the other side, so swap
              a(iA) = a(iB - 1)
              a(iB - 1) = current
              iB -= 1
            case _ =>
              // Wrong side and there is no room.  Swap by rotating pivot block.
              a(iA) = a(pL - 1)
              a(pL - 1) = a(pR - 1)
              a(pR - 1) = current
              pL -= 1
              pR -= 1
              iB -= 1
          }
        }
        // Get anything remaining in buffer after the pivot(s)
        while (iB - pR > 0) {
          val current = a(iB - 1)
          ord.compare(current, pivot) match {
            case 0 =>
              // Swap current out with pivot block
              a(iB - 1) = a(pR)
              a(pR) = current
              pR += 1
            case x if x > 0 =>
              // Already in place.  Just update indices.
              iB -= 1
            case _ =>
              // Wrong side and we already know there is no room.  Swap by rotating pivot block.
              a(iB - 1) = a(pR)
              a(pR) = a(pL)
              a(pL) = current
              iA += 1
              pL += 1
              pR += 1
          }
        }
        // Use tail recursion on large half (Sedgewick's method) so we don't blow up the stack if pivots are poorly chosen
        if (iA - i0 < iN - iB) {
          inner(a, i0, iA, ord)  // True recursion
          inner(a, iB, iN, ord)  // Should be tail recursion
        }
        else {
          inner(a, iB, iN, ord)  // True recursion
          inner(a, i0, iA, ord)  // Should be tail recursion
        }
      }
    }
    inner(a, 0, a.length, implicitly[Ordering[K]])
  }

  private final val mergeThreshold = 32

  // Ordering[T] might be slow especially for boxed primitives, so use binary search variant of insertion sort
  // Caller must pass iN >= i0 or math will fail.  Also, i0 >= 0.
  private def insertionSort[@specialized T](a: Array[T], i0: Int, iN: Int, ord: Ordering[T]): Unit = {
    val n = iN - i0
    if (n < 2) return
    if (ord.compare(a(i0), a(i0+1)) > 0) {
      val temp = a(i0)
      a(i0) = a(i0+1)
      a(i0+1) = temp
    }
    var m = 2
    while (m < n) {
      // Speed up already-sorted case by checking last element first
      val next = a(i0 + m)
      if (ord.compare(next, a(i0+m-1)) < 0) {
        var iA = i0
        var iB = i0 + m - 1
        while (iB - iA > 1) {
          val ix = (iA + iB) >>> 1    // Use bit shift to get unsigned div by 2
          if (ord.compare(next, a(ix)) < 0) iB = ix
          else iA = ix
        }
        val ix = iA + (if (ord.compare(next, a(iA)) < 0) 0 else 1)
        var i = i0 + m
        while (i > ix) {
          a(i) = a(i-1)
          i -= 1
        }
        a(ix) = next
      }
      m += 1
    }
  }

  // Caller is required to pass iN >= i0, else math will fail.  Also, i0 >= 0.
  private def mergeSort[@specialized T: ClassTag](a: Array[T], i0: Int, iN: Int, ord: Ordering[T], scratch: Array[T] = null): Unit = {
    if (iN - i0 < mergeThreshold) insertionSort(a, i0, iN, ord)
    else {
      val iK = (i0 + iN) >>> 1   // Bit shift equivalent to unsigned math, no overflow
      val sc = if (scratch eq null) new Array[T](iK - i0) else scratch
      mergeSort(a, i0, iK, ord, sc)
      mergeSort(a, iK, iN, ord, sc)
      mergeSorted(a, i0, iK, iN, ord, sc)
    }
  }

  // Must have 0 <= i0 < iK < iN
  private def mergeSorted[@specialized T](a: Array[T], i0: Int, iK: Int, iN: Int, ord: Ordering[T], scratch: Array[T]): Unit = {
    // Check to make sure we're not already in order
    if (ord.compare(a(iK-1), a(iK)) > 0) {
      var i = i0
      val jN = iK - i0
      var j = 0
      while (i < iK) {
        scratch (j) = a(i)
        i += 1
        j += 1
      }
      var k = i0
      j = 0
      while (i < iN && j < jN) {
        if (ord.compare(a(i), scratch(j)) < 0) { a(k) = a(i); i += 1 }
        else { a(k) = scratch(j); j += 1 }
        k += 1
      }
      while (j < jN) { a(k) = scratch(j); j += 1; k += 1 }
      // Don't need to finish a(i) because it's already in place, k = i
    }
  }

  // Why would you even do this?
  private def booleanSort(a: Array[Boolean]): Unit = {
    var i = 0
    var n = 0
    while (i < a.length) {
      if (!a(i)) n += 1
      i += 1
    }
    i = 0
    while (i < n) {
      a(i) = false
      i += 1
    }
    while (i < a.length) {
      a(i) = true
      i += 1
    }
  }

  // TODO: add upper bound: T <: AnyRef, propagate to callers below (not binary compatible)
  // Maybe also rename all these methods to `sort`.
  @inline private def sort[T](a: Array[T], ord: Ordering[T]): Unit = a match {
    case _: Array[AnyRef]  =>
      // Note that runtime matches are covariant, so could actually be any Array[T] s.t. T is not primitive (even boxed value classes)
      if (a.length > 1 && (ord eq null)) throw new NullPointerException("Ordering")
      java.util.Arrays.sort(a, ord)
    case a: Array[Int]     => if (ord eq Ordering.Int) java.util.Arrays.sort(a) else mergeSort[Int](a, 0, a.length, ord)
    case a: Array[Double]  => mergeSort[Double](a, 0, a.length, ord)  // Because not all NaNs are identical, stability is meaningful!
    case a: Array[Long]    => if (ord eq Ordering.Long) java.util.Arrays.sort(a) else mergeSort[Long](a, 0, a.length, ord)
    case a: Array[Float]   => mergeSort[Float](a, 0, a.length, ord)   // Because not all NaNs are identical, stability is meaningful!
    case a: Array[Char]    => if (ord eq Ordering.Char) java.util.Arrays.sort(a) else mergeSort[Char](a, 0, a.length, ord)
    case a: Array[Byte]    => if (ord eq Ordering.Byte) java.util.Arrays.sort(a) else mergeSort[Byte](a, 0, a.length, ord)
    case a: Array[Short]   => if (ord eq Ordering.Short) java.util.Arrays.sort(a) else mergeSort[Short](a, 0, a.length, ord)
    case a: Array[Boolean] => if (ord eq Ordering.Boolean) booleanSort(a) else mergeSort[Boolean](a, 0, a.length, ord)
    // Array[Unit] is matched as an Array[AnyRef] due to covariance in runtime matching.  Not worth catching it as a special case.
    case null => throw new NullPointerException
  }

  // TODO: remove unnecessary ClassTag (not binary compatible)
  /** Sort array `a` using the Ordering on its elements, preserving the original ordering where possible.  Uses `java.util.Arrays.sort` unless `K` is a primitive type. */
  def stableSort[K: ClassTag: Ordering](a: Array[K]): Unit = sort(a, Ordering[K])

  // TODO: Remove unnecessary ClassTag (not binary compatible)
  // TODO: make this fast for primitive K (could be specialized if it didn't go through Ordering)
  /** Sort array `a` using function `f` that computes the less-than relation for each element.  Uses `java.util.Arrays.sort` unless `K` is a primitive type. */
  def stableSort[K: ClassTag](a: Array[K], f: (K, K) => Boolean): Unit = sort(a, Ordering fromLessThan f)

  /** A sorted Array, using the Ordering for the elements in the sequence `a`.  Uses `java.util.Arrays.sort` unless `K` is a primitive type. */
  def stableSort[K: ClassTag: Ordering](a: Seq[K]): Array[K] = {
    val ret = a.toArray
    sort(ret, Ordering[K])
    ret
  }

  // TODO: make this fast for primitive K (could be specialized if it didn't go through Ordering)
  /** A sorted Array, given a function `f` that computes the less-than relation for each item in the sequence `a`.  Uses `java.util.Arrays.sort` unless `K` is a primitive type. */
  def stableSort[K: ClassTag](a: Seq[K], f: (K, K) => Boolean): Array[K] = {
    val ret = a.toArray
    sort(ret, Ordering fromLessThan f)
    ret
  }

  /** A sorted Array, given an extraction function `f` that returns an ordered key for each item in the sequence `a`.  Uses `java.util.Arrays.sort` unless `K` is a primitive type. */
  def stableSort[K: ClassTag, M: Ordering](a: Seq[K], f: K => M): Array[K] = {
    val ret = a.toArray
    sort(ret, Ordering[M] on f)
    ret
  }
}