

	Skip to content

	

		

		
					

	
	

		
		
							Gary Sieling

			
							Principal Engineer

					

		
	

					
				
					
	
		 Menu	

		Machine Learning
	Full Text Search
	Data Science
	Scraping
	Postgres
	DevOps
	AWS
	Talks

	
				

			

		
	

	
	
		

	
		

			

		
		Posted on July 22, 2013March 31, 2020 by gary
Extracting Tables from PDFs in Javascript with PDF.js
	

	
	
		A common and difficult problem acquiring data is extracting tables from a PDF. Previously, I described how to extract the text from a PDF with PDF.js, a PDF rendering library made by Mozilla Labs.

The rendering process requires an HTML canvas object, and then draws each object (character, line, rectangle, etc) on it. The easiest way to get a list of these is to to intercept all the calls PDF.js makes to drawing functions on the canvas object. (see “Self Modifying Javascripts” for a similar technique). The “set” method below adds a wrapper closure to each function, which logs the call.

function replace(ctx, key) {
 var val = ctx[key];
 if (typeof(val) == "function") {
 ctx[key] = function() {
 var args = Array.prototype.slice.call(arguments);
 console.log("Called " + key + "(" + args.join(",") + ")");
 return val.apply(ctx, args);
 }
 }
}

for (var k in context) {
 replace(context, k);
}

var renderContext = {
 canvasContext: context,
 viewport: viewport
};

page.render(renderContext);

This lets us see a series of calls:

Called transform(1,0,0,1,150.42,539.67)
Called translate(0,0)
Called scale(1,-1)
Called scale(0.752625,0.752625)
Called measureText(C)
Called save()
Called scale(0.9701818181818181,1)
Called fillText(C,0,0)
Called restore()
Called restore()
Called save()
Called transform(1,0,0,1,150.42,539.6

We can easily retrieve the text by noting the first argument to each “fillText” call:

"Congregations Ranked by Growth and Decline in Membership and Worship Attendance, 2006 to 2011Philadelphia Presbytery - Table 16Net
Membership ChangeNet Worship ChangePercent ChangePercent ChangeWorship
 2006Worship 2011Membership 2006Membership 2011Abington, Abington-
143(74)-13.18%(57)0(15)0.00%(22)NumberRank3003001,085942Anchor,
Wrightstown0(23)0.00%(27)-12(25)-21.43%(52)NumberRank56449797Arch
Street, Philadelphia-117(71)-68.42%(117)27(5)90.00%
(2)NumberRank305717154Aston, Aston3(21)3.53%(22)-5(19)-9.43%
(31)NumberRank53488588BeaconNo reportboth yearsNo reportboth
yearsNumberRankBensalem, Bensalem-23(39)-13.94%(62)-28(36)-28.57%
(64)NumberRank9870165142Berean, Philadelphia106(4)44.92%(4)No
reportboth yearsNumberRank00236342Bethany Collegiate, Havertown-
188(76)-42.44%(110)43(3)21.29%(7)NumberRank202245443255Bethel,
Philadelphia-13(33)-13.68%(60)-27(35)-35.06%
(71)NumberRank77509582Bethesda, Philadelphia9(18)5.56%(18)No reportboth
yearsNumberRank1150162171Beverly Hills, Upper Darby-3(26)-3.03%
(32)-11(24)-20.00%(48)NumberRank55449996Bridesburg,
Philadelphia0(23)0.00%(27)No reportboth yearsNumberRank004444Bristol,
BristolNo reportboth yearsNo reportboth yearsNumberRankPage 1 of
10Report prepared by Research Services, Presbyterian Church (U.S.A.)1-
800-728-7228, ext #204006-Oct-12"

Notably, this doesn’t track line endings, and not all the characters are recorded in the expected order (the first line is rendered after the second).

The calls to transform, translate, and scale control where text is placed. The fillText method also takes an (x, y) parameter set that moves the individual letters between words. The exact position is a combination of successive operations, which are modeled as a stack of matrix operations.

Thankfully, PDF.js tracks the output of these operations as it renders, so we don’t have to recalculate it.

Thus, we can make a method that records the letters and their real positions. This method takes the internal context object, the type of state transition, and the arguments to the transition. This method is then called from the ‘record’ function listed above.

var chars = [];
var cur = {};

function record(ctx, state, args) {
 if (state === 'fillText') {
 var c = args[0];
 cur.c = c;
 cur.x = ctx._transformMatrix[4] + args[1];
 cur.y = ctx._transformMatrix[5] + args[2];

 chars[chars.length] = cur;
 cur = {};
 }
}

These results can be sorted by position (x and y). The sort method arranges letters by position – if they are shifted up or down a small amount, they are considered to be on one line.

chars.sort(
 function(a, b) {
 var dx = b.x - a.x;
 var dy = b.y - a.y;

 if (Math.abs(dy) < 0.5) {
 return dx * -1;
 } else {
 return dy * -1;
 }
 }
);

This presents several difficulties: this doesn’t detect right-to-left text, and it’s becoming clear that we’re going to have a hard time knowing when you’re in a table and when we aren’t.

To do this, we define a function which can transform the array of letters and positions into a CSV style output. This tracks from letter to letter – if it sees a “large” change in y, it makes a new line. If it sees a “large” change in x, it treats it as a new column.

The real challenge is defining “large” which for my test PDF were around 15 and 20, for dx and dy.

function getText(marks, ex, ey, v) {
 var x = marks[0].x;
 var y = marks[0].y;

 var txt = '';
 for (var i = 0; i < marks.length; i++) {
 var c = marks[i];
 var dx = c.x - x;
 var dy = c.y - y;

 if (Math.abs(dy) > ey) {
 txt += "\"\n\"";
 if (marks[i+1]) {
 // line feed - start from position of next line
 x = marks[i+1].x;
 }
 }

 if (Math.abs(dx) > ex) {
 txt += "\",\"";
 }

 if (v) {
 console.log(dx + ", " + dy);
 }

 txt += c.c;

 x = c.x;
 y = c.y;
 }

 return txt;
}

This algorithm doesn’t handle newlines in rows, and oddly, the columns don’t come out in the right order, but they appear to be consistently out of order. Line with large spaces (e.g. an em-dash) are detected as having multiple columns, but this can be cleaned up later – here is some sample output.

You can see an example below, and the final source is available on github.

Congregations Ranked by Growth and Decline in M","embership and W","orship Attendance, 2006 to 2011"
"","Philadelphia Presbytery"," - Table 16"
"","Net ","Membership ","Change"
"","Net Worship ","Change","Percent ","Change","Percent ","Change","Worship"," 2006","Worship"," 2011","Membership"," 2006","Membership"," 2011"
"","Abington, Abington","-143","(74)","-13.18%(57)","0","(15)","0.00%(22)","Number","Rank","300","300","1,085","942"
"","Anchor, Wrightstown","0","(23)","0.00%(27)","-12","(25)","-21.43%(52)","Number","Rank","56","44","97","97"
"","Arch Street, Philadelphia","-117","(71)","-68.42%","(117)","27(5)","90.00%(2)","Number","Rank","30","57","171","54"
"","Aston, Aston","3","(21)","3.53%(22)","-5","(19)","-9.43%(31)","Number","Rank","53","48","85","88"
"","Beacon","No report","both years","No report","both years","Number","Rank"
"","Bensalem, Bensalem","-23","(39)","-13.94%(62)","-28","(36)","-28.57%(64)","Number","Rank","98","70","165","142"
"","Berean, Philadelphia","106(4)","44.92%(4)","No report","both years","Number","Rank","0","0","236","342"
"","Bethany Collegiate, Havertown","-188","(76)","-42.44%","(110)","43(3)","21.29%(7)","Number","Rank","202","245","443","255"
"","Bethel, Philadelphia","-13","(33)","-13.68%(60)","-27","(35)","-35.06%(71)","Number","Rank","77","50","95","82"
"","Bethesda, Philadelphia","9","(18)","5.56%(18)","No report","both years","Number","Rank","115","0","162","171"
"","Beverly Hills, Upper Darby","-3","(26)","-3.03%(32)","-11","(24)","-20.00%(48)","Number","Rank","55","44","99","96"
"","Bridesburg, Philadelphia","0","(23)","0.00%(27)","No report","both years","Number","Rank","0","0","44","44"
"","Bristol, Bristol","No report","both years","No report","both years","Number","Rank"
"","Page 1 of 10","Report prepared by Research Services, Presbyterian Church (U.S.A.)","1-800-728-7228, ext #2040","06-Oct-12"

	

	 CategoriesCode Examples, Data Mining, Data Science, Proof of Concepts Tagshtml5, javascript, pdfs, scraping

			
			11 Replies to “Extracting Tables from PDFs in Javascript with PDF.js”		

			
			
				
					
												max ogden says:					

					
						July 22, 2013 at 5:53 pm					

									

				
					very cool. can you maybe comment on how this approach differs from http://tabula.nerdpower.org/ ?

				

				 Reply
			
			
			
				
					
												Gary says:					

					
						July 23, 2013 at 2:16 am					

									

				
					Tabula is obviously packaged better (at the moment, I just whipped this example up). Ideally I’d like to improve this towards a solution that doesn’t require any manual intervention (for instance, I’m already ignoring page boundaries)

				

				 Reply
			
		

	
			
				
					
												ANONDREN says:					

					
						July 23, 2013 at 2:18 am					

									

				
					This is a great innovation.

				

				 Reply
			
		
	
			
				
					
												Sander says:					

					
						September 10, 2013 at 11:19 am					

									

				
					This looks very promising. However I can’t seem to get it working on my system. Could you provide me with an overview of the system requirements and dependencies/libraries being used?

				

				 Reply
			
		
	
			
				
					
												Sander says:					

					
						September 10, 2013 at 1:37 pm					

									

				
					This looks very promising. However I can’t seem to get it to work on my system. Would you be able to add a short list of the dependencies/libraries and the operating system you used?

				

				 Reply
			
		
	
			
				
					
												Gary says:					

					
						September 16, 2013 at 2:06 am					

									

				
					Sander- I’ve updated the tool so you can run it from the command line. It still needs a few options to handle different types of PDF layouts, but I’ve included a test example.

https://github.com/garysieling/pdf-js-csv

				

				 Reply
			
		
	
			
				
					
												Shola Smith says:					

					
						January 6, 2014 at 12:34 pm					

									

				
					With your good grasp of PhantomJS, please, what’s the best way to submit form data and evaluate the resulting page in PhantomJS?

In evaluating the resulting page, I would have to visit some other addresses in the same domain as the one I’ve logged into and upload a document.

The second paragraph would have to be repeated a couple of times, so it would have to rest for a while before it repeats itself, thanks.

				

				 Reply
			
			
			
				
					
												Gary says:					

					
						February 1, 2014 at 3:11 pm					

									

				
					I’m not sure offhand, since I haven’t done anything quite like that, but if you want to do it in Javascript you might try NPM, I found a file uploader library- https://npmjs.org/package/file-uploader

The issue with automating browser based file uploads (which is basically what you’re trying to do) is that it has to bypass the javascript security somehow. The APIs intentionally don’t let you upload arbitrary files, since you could write a website that did that, although it’s possible PhantomJS has a way around that.

				

				 Reply
			
		

	
			
				
					
												Jonjon says:					

					
						June 25, 2014 at 12:20 pm					

									

				
					Was looking for a way to do this that doesn’t require too much hacking.. and found this http://jazzido.github.io/tabula/

It looks promising… here’s a screencast of how it works: https://erika.makes.org/popcorn/16ll

				

				 Reply
			
		
	
			
				
					
												Chandra says:					

					
						September 23, 2014 at 12:51 pm					

									

				
					Tabula runs off of LGPL JPedal java library by selecting a window visually. A good synchronous server-side javascript solution would be nice.

				

				 Reply
			
		
	
			
				
					
												Abdullah Imrul Kayesh says:					

					
						August 23, 2016 at 9:40 am					

									

				
					ctx._transformMatrix — is undefined. how to retrieve position?

				

				 Reply
			
		

			
		Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Comment *
Name *

Email *

Website

					Current ye@r *
					
					
				

					Leave this field empty
					
				

	

	

	
		Post navigation

		Previous PostPrevious Exploring Zipf’s Law with Python, NLTK, SciPy, and Matplotlib
Next PostNext Part of Speech Tagging: NLTK vs Stanford NLP

	
		
	

	

	

	
		Search for:
	
	
	 Search

	Thought Experiments
	Proof of Concepts
	Book Reviews
	Projects
	Essays
	Talks

	Programming Techniques
	Javascript
	Python
	Prolog
	Scala
	Java
	PHP
	C#
	R

		
		Recent Posts

			
					Import a folder of CSVs into a single Google Sheet (1 per tab)
									
	
					R Code to summarize Dept of Ed, Civil Rights Data by school district / LEA
									
	
					Export Census ACS5 data by GEOID/block group to CSV in R
									
	
					Get US Census population by block group (GEOID) in R
									
	
					Get a list of census fields available at the GEOID (block group) level in R
									
	
					PA Senate Committees 2023 CSV Download
									
	
					PA House Committees CSV 2023
									

		

		

		
			
				

	
					
				
			

				

		
		Proudly powered by WordPress	

			

		
	

